Matrices

Solve for matrices $A$ and $B$:
$2A + B = \begin{bmatrix} 3 & -4 \\ 2 & 7 \end{bmatrix}$ and $A - 2B = \begin{bmatrix} 4 & 3 \\ 1 & 1 \end{bmatrix}$


Given matrix equations:

$2A + B = \begin{bmatrix} 3 & -4 \\ 2 & 7 \end{bmatrix}$ $\;\;\; \cdots \; (1)$; $\;\;$ $A - 2B = \begin{bmatrix} 4 & 3 \\ 1 & 1 \end{bmatrix}$ $\;\;\; \cdots \; (2)$

We have from equation $(2)$

$A = \begin{bmatrix} 4 & 3 \\ 1 & 1 \end{bmatrix} + 2 B$ $\;\;\; \cdots \; (3)$

$\implies$ $2A = \begin{bmatrix} 8 & 6 \\ 2 & 2 \end{bmatrix} + 4 B$ $\;\;\; \cdots \; (4)$

In view of equation $(4)$, equation $(1)$ becomes

$\begin{bmatrix} 8 & 6 \\ 2 & 2 \end{bmatrix} + 4 B + B = \begin{bmatrix} 3 & -4 \\ 2 & 7 \end{bmatrix}$

i.e. $\;$ $5 B = \begin{bmatrix} 3 & -4 \\ 2 & 7 \end{bmatrix} - \begin{bmatrix} 8 & 6 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 3 - 8 & -4 - 6 \\ 2 - 2 & 7 - 2 \end{bmatrix} = \begin{bmatrix} -5 & -10 \\ 0 & 5 \end{bmatrix}$

$\implies$ $B = \begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix}$ $\;\;\; \cdots \; (5)$

Substituting the value of $B$ from equation $(5)$ in equation $(3)$ gives

$A = \begin{bmatrix} 4 & 3 \\ 1 & 1 \end{bmatrix} + 2 \begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix}$

i.e. $\;$ $A = \begin{bmatrix} 4 & 3 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} -2 & -4 \\ 0 & 2 \end{bmatrix}$

i.e. $\;$ $A = \begin{bmatrix} 4 - 2 & 3 - 4 \\ 1 + 0 & 1 + 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$

$\therefore \;$ $A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$; $\;$ $B = \begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix}$