Algebra - Airthmetic Progressions

The eighth term of an A.P is half its second term and the eleventh term exceeds one third of its fourth term by $1$. Find the $15^{th}$ term of the A.P.


Let the first term of the A.P be $\;$ $t_1 = a$ $\;$ and the common difference $= d$

$n^{th}$ $\;$ term of A.P $\;$ $= t_n = a + \left(n - 1\right) d$

$\therefore \;$ $2^{nd}$ term of A.P $= t_2 = a + d$;

$4^{th}$ term $= t_4 = a + 3d$;

$8^{th}$ term $= t_8 = a + 7d$; $\;\;$ and

$11^{th}$ term $= t_{11} = a + 10d$

As per the question,

$t_8 = \dfrac{1}{2} \times t_2$

i.e. $\;$ $a + 7d = \dfrac{1}{2} \times \left(a + d\right)$

i.e. $\;$ $2a + 14 d = a + d$ $\;\;\;$

i.e. $\;$ $a + 13d = 0$ $\implies$ $a = -13d$ $\;\;\; \cdots \;\;\; (1)$

Also, as per the problem

$t_{11} = \left(\dfrac{1}{3} \times t_4\right) + 1$

i.e. $\;$ $a + 10 d = \dfrac{1}{3} \times \left(a + 3d\right) + 1$

i.e. $\;$ $3a + 30d = a + 3d + 3$

i.e. $\;$ $2a + 27d = 3$ $\;\;\; \cdots \;\;\; (2)$

In view of equation $(1)$, equation $(2)$ becomes

$2 \times \left(-13 d\right) + 27 d = 3$ $\;\;\;$ $\implies$ $d = 3$

Substituting the value of $d$ in equation $(1)$ gives

$a = -13 \times 3 = -39$

Now, $15^{th}$ term of A.P $= t_{15} = a + 14d$

i.e. $\;$ $t_{15} = -39 + \left(14 \times 3\right) = 3$