Matrices

Solve for matrices $A$ and $B$:
$2A + B = \begin{bmatrix} 3 & -4 \\ 2 & 7 \end{bmatrix}$ and $A - 2B = \begin{bmatrix} 4 & 3 \\ 1 & 1 \end{bmatrix}$


Given matrix equations:

$2A + B = \begin{bmatrix} 3 & -4 \\ 2 & 7 \end{bmatrix}$ $\;\;\; \cdots \; (1)$; $\;\;$ $A - 2B = \begin{bmatrix} 4 & 3 \\ 1 & 1 \end{bmatrix}$ $\;\;\; \cdots \; (2)$

We have from equation $(2)$

$A = \begin{bmatrix} 4 & 3 \\ 1 & 1 \end{bmatrix} + 2 B$ $\;\;\; \cdots \; (3)$

$\implies$ $2A = \begin{bmatrix} 8 & 6 \\ 2 & 2 \end{bmatrix} + 4 B$ $\;\;\; \cdots \; (4)$

In view of equation $(4)$, equation $(1)$ becomes

$\begin{bmatrix} 8 & 6 \\ 2 & 2 \end{bmatrix} + 4 B + B = \begin{bmatrix} 3 & -4 \\ 2 & 7 \end{bmatrix}$

i.e. $\;$ $5 B = \begin{bmatrix} 3 & -4 \\ 2 & 7 \end{bmatrix} - \begin{bmatrix} 8 & 6 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 3 - 8 & -4 - 6 \\ 2 - 2 & 7 - 2 \end{bmatrix} = \begin{bmatrix} -5 & -10 \\ 0 & 5 \end{bmatrix}$

$\implies$ $B = \begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix}$ $\;\;\; \cdots \; (5)$

Substituting the value of $B$ from equation $(5)$ in equation $(3)$ gives

$A = \begin{bmatrix} 4 & 3 \\ 1 & 1 \end{bmatrix} + 2 \begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix}$

i.e. $\;$ $A = \begin{bmatrix} 4 & 3 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} -2 & -4 \\ 0 & 2 \end{bmatrix}$

i.e. $\;$ $A = \begin{bmatrix} 4 - 2 & 3 - 4 \\ 1 + 0 & 1 + 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$

$\therefore \;$ $A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$; $\;$ $B = \begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix}$

Algebra - Airthmetic Progressions

The eighth term of an A.P is half its second term and the eleventh term exceeds one third of its fourth term by $1$. Find the $15^{th}$ term of the A.P.


Let the first term of the A.P be $\;$ $t_1 = a$ $\;$ and the common difference $= d$

$n^{th}$ $\;$ term of A.P $\;$ $= t_n = a + \left(n - 1\right) d$

$\therefore \;$ $2^{nd}$ term of A.P $= t_2 = a + d$;

$4^{th}$ term $= t_4 = a + 3d$;

$8^{th}$ term $= t_8 = a + 7d$; $\;\;$ and

$11^{th}$ term $= t_{11} = a + 10d$

As per the question,

$t_8 = \dfrac{1}{2} \times t_2$

i.e. $\;$ $a + 7d = \dfrac{1}{2} \times \left(a + d\right)$

i.e. $\;$ $2a + 14 d = a + d$ $\;\;\;$

i.e. $\;$ $a + 13d = 0$ $\implies$ $a = -13d$ $\;\;\; \cdots \;\;\; (1)$

Also, as per the problem

$t_{11} = \left(\dfrac{1}{3} \times t_4\right) + 1$

i.e. $\;$ $a + 10 d = \dfrac{1}{3} \times \left(a + 3d\right) + 1$

i.e. $\;$ $3a + 30d = a + 3d + 3$

i.e. $\;$ $2a + 27d = 3$ $\;\;\; \cdots \;\;\; (2)$

In view of equation $(1)$, equation $(2)$ becomes

$2 \times \left(-13 d\right) + 27 d = 3$ $\;\;\;$ $\implies$ $d = 3$

Substituting the value of $d$ in equation $(1)$ gives

$a = -13 \times 3 = -39$

Now, $15^{th}$ term of A.P $= t_{15} = a + 14d$

i.e. $\;$ $t_{15} = -39 + \left(14 \times 3\right) = 3$