Algebra - Geometric Progressions

The sum of the first two terms of a geometric progression (G.P) is $15$. The first term exceeds the common ratio of the progression by $\dfrac{25}{3}$. Find the fourth term of the progression.


Let the first term of the G.P be $= t_1 = a$

and the common ratio be $= r$

$n^{th}$ term of G.P $= t_n = a \cdot r^{n - 1}$

$\therefore \;$ Second term of G.P $= t_2 = a \cdot r$

Given: $\;$ $t_1 + t_2 = 15$

i.e. $\;$ $a + a \cdot r = 15$

i.e. $\;$ $a \left(1 + r\right) = 15$ $\;\;\; \cdots \; (1)$

And: $\;$ $t_1 = r + \dfrac{25}{3}$

i.e. $\;$ $a = r + \dfrac{25}{3}$ $\;\;\; \cdots \; (2)$

$\therefore \;$ In view of equation $(2)$, equation $(1)$ becomes

$\left(r + \dfrac{25}{3}\right) \times \left(1 + r\right) = 15$

i.e. $\;$ $r^2 + \dfrac{28 r}{3} + \dfrac{25}{3} = 15$

i.e. $\;$ $3r^2 + 28 r - 20 = 0$

i.e. $\;$ $3 r^2 + 30 r - 2 r - 20 = 0$

i.e. $\;$ $3r \left(r + 10\right) - 2 \left(r + 10\right) = 0$

i.e. $\;$ $\left(r + 10\right) \left(3r - 2\right) = 0$

i.e. $\;$ $r = -10$ $\;$ or $\;$ $r = \dfrac{2}{3}$

Substituting the value of $r$ in equation $(2)$ gives

when $\;$ $r = -10$, $\;$ $a = -10 + \dfrac{25}{3} = \dfrac{-5}{3}$

and when $\;$ $r = \dfrac{2}{3}$, $\;$ $a = \dfrac{2}{3} + \dfrac{25}{3} = 9$

Now, fourth term of the G.P $= t_4 = a \cdot r^3$

$\therefore \;$ when $\;$ $a = \dfrac{-5}{3}$, $\;$ $r = -10$, $\;$ $t_4 = \dfrac{-5}{3} \times \left(-10\right)^3 = \dfrac{5000}{3}$

and when $\;$ $a = 9$, $\;$ $r = \dfrac{2}{3}$, $\;$ $t_4 = 9 \times \left(\dfrac{2}{3}\right)^3 = \dfrac{8}{3}$