Algebra - Geometric Progressions

The difference between the fourth and the first term of a geometric progression (G.P) is $52$ and the sum of the first three terms is $26$. Calculate the sum of the first six terms of the progression.


Let the first term of the G.P be $= t_1 = a$

and the common ratio be $= r$

$n^{th}$ term of G.P $= t_n = a \times r^{n - 1}$

$\therefore \;$ $4^{th}$ term of G.P $= t_4 = a \cdot r^3$

Sum of $n$ terms of G.P $= S_n = \dfrac{a \left(r^n - 1\right)}{r - 1}$

Given: $\;$ $t_4 - t_1 = 52$

i.e. $\;$ $a \cdot r^3 - a = 52$

i.e. $\;$ $a \left(r^3 - 1\right) = 52$ $\;\;\; \cdots \; (1)$

And: $\;$ $S_3 = 26$

i.e. $\;$ $\dfrac{a \left(r^3 - 1\right)}{r - 1} = 26$ $\;\;\; \cdots \; (2)$

In view of equation $(1)$, equation $(2)$ becomes

$\dfrac{52}{r - 1} = 26$

i.e. $\;$ $r - 1 = 2$ $\implies$ $r = 3$

Substituting the value of $r$ in equation $(1)$ gives

$a \left(3^3 - 1\right) = 52$ $\implies$ $a = \dfrac{52}{26} = 2$

$\therefore \;$ Sum of the first six terms of G.P

$= S_6 = \dfrac{a \left(r^6 - 1\right)}{r - 1} = \dfrac{2 \times \left(3^6 - 1\right)}{3 - 1} = 728$