Trigonometry - Solution of Trigonometric Equations

Solve the equation: $\;$ $\tan^3 x - 1 + \dfrac{1}{\cos^2 x} - 3 \cot \left(\dfrac{\pi}{2} - x\right) = 3$


Given equation: $\;\;\;$ $\tan^3 x - 1 + \dfrac{1}{\cos^2 x} - 3 \cot \left(\dfrac{\pi}{2} - x\right) = 3$

i.e. $\;$ $\tan^3 x + \left(-1 + \sec^2 x\right) - 3 \tan x - 3 = 0$

i.e. $\;$ $\tan^3 x + \tan^2 x - 3 \tan x - 3 = 0$

i.e. $\;$ $\tan^2 x \left(1 + \tan x\right) - 3 \left(1 + \tan x\right) = 0$

i.e. $\;$ $\left(1 + \tan x\right) \left(\tan^2 x - 3\right) = 0$

$\implies$ $1 + \tan x = 0$ $\;$ or $\;$ $\tan^2 x - 3 = 0$

Case 1:

$1 + \tan x = 0$ $\implies$ $\tan x = -1$

$\begin{aligned} i.e. \; x & = n \pi + \tan^{-1} \left(-1\right) \\\\ & = n \pi - \tan^{-1} \left(1\right) \\\\ & = n \pi - \dfrac{\pi}{4}, \;\; n \in I \end{aligned}$

Case 2:

$\tan^2 x - 3 = 0$ $\implies$ $\tan x = \pm \sqrt{3}$

When $\;$ $\tan x = \sqrt{3} = \tan \left(\dfrac{\pi}{3}\right)$

$\implies$ $x = m \pi + \dfrac{\pi}{3}, \;\; m \in I$

When $\;$ $\tan x = - \sqrt{3}$

$\begin{aligned} i.e. \; x & = k \pi + \tan^{-1} \left(-\sqrt{3}\right) \\\\ & = k \pi - \tan^{-1} \left(\sqrt{3}\right) \\\\ & = k \pi - \dfrac{\pi}{3}, \;\; k \in I \end{aligned}$