Algebra - Arithmetic Progressions

Solve the equation: $\;\;\;$ $5^2 \times 5^4 \times 5^6 \times \cdots \times 5^{2x} = \left(0.04\right)^{-28}$


Given equation: $\;\;\;$ $5^2 \times 5^4 \times 5^6 \times \cdots \times 5^{2x} = \left(0.04\right)^{-28}$

i.e. $\;$ $5^{\left[2 + 4 + 6 + \cdots + 2x\right]} = \left(\dfrac{1}{25}\right)^{-28}$

i.e. $\;$ $5^{\left[2 + 4 + 6 + \cdots + 2x\right]} = \left(5^{-2}\right)^{-28} = 5^{56}$

$\implies$ $2 + 4 + 6 + \cdots + 2x = 56$ $\;\;\; \cdots \; (1)$

Now, $\;$ $2 + 4 + 6 + \cdots + 2x$ $\;$ is an arithmetic progression (A.P) with

first term $= a = 2$,

common difference $= d = 2$,

$n^{th}$ term $= t_n = 2x$ $\;$ and

sum to $n$ terms $= S_n = 56$

$n^{th}$ term of an A.P $= t_n = a + \left(n - 1\right)d$

i.e. $\;$ $2x = 2 + \left(n - 1\right) \times 2$

i.e. $\;$ $x = 1 + n - 1$ $\implies$ $x = n$ $\;\;\; \cdots \; (2)$

Sum to $n$ terms of an A.P $= S_n = \dfrac{n}{2} \times \left[2a + \left(n - 1\right)d\right]$

i.e. $\;$ $56 = \dfrac{n}{2} \times \left[2 \times 2 + \left(n - 1\right) \times 2\right]$

i.e. $\;$ $112 = n \left[4 + 2n - 2\right]$

i.e. $\;$ $2n^2 + 2n - 112 = 0$

i.e. $\;$ $n^2 + n - 56 = 0$

i.e. $\;$ $\left(n - 7\right) \left(n + 8\right) = 0$

i.e. $\;$ $n - 7 = 0$ $\;$ or $\;$ $n + 8 = 0$

i.e. $\;$ $n = 7$ $\;$ or $\;$ $n = -8$

Since the number of terms of an A.P cannot be negative,

$\implies$ $n = 7$

$\therefore \;$ By equation $(2)$, $\;$ $x = 7$