Trigonometry - Inverse Trigonometric Functions

Calculate: $\;$ $\cot^{-1} \left[\tan \left(- 37^{\circ}\right)\right]$


Given Expression (GE): $\;$ $\cot^{-1} \left[\tan \left(- 37^{\circ}\right)\right]$

$= \cot^{-1} \left[- \tan 37^\circ\right]$

$= \cot^{-1} \left[- \tan \left(90^\circ - 53^\circ\right)\right]$

$= \cot^{-1} \left[- \cot 53^\circ\right]$

Let $\;$ $\cot 53^\circ = x$

Then, GE $= \cot^{- 1} \left(- x\right) = \pi - \cot^{-1} x$

$= \pi - \cot^{-1} \left(\cot 53^\circ\right)$ $\;\;\;$ [substituting for $x$]

$= \pi - 53^\circ = 127^\circ$

Formulas used:

$\tan \left(- \theta\right) = - \tan \theta$

$\cot \theta = \tan \left(\dfrac{\pi}{2} - \theta\right)$

$\cot^{-1} \left(- \theta\right) = \pi - \cot^{-1} \theta, \;\;\; \forall \; \theta \in R$

$\cot^{-1} \left(\cot \theta\right) = \theta, \;\;\; \forall \; \theta \in \left(0, \pi\right)$