Trigonometry - Simplification of Trigonometric Expressions

Calculate without using tables:
$\cos 10^\circ \cos 50^\circ \cos 70^\circ$


The given expression is: $\;\;$ $\cos 10^\circ \cos 50^\circ \cos 70^\circ$

$= \dfrac{1}{2} \times \left[2 \cos 10^\circ \cos 50^\circ\right] \cos 70^\circ$

$= \dfrac{1}{2} \left[\cos \left(10^\circ - 50^\circ\right) + \cos \left(10^\circ + 50^\circ\right)\right] \cos 70^\circ$

$= \dfrac{1}{2} \left[\cos \left(-40^\circ\right) + \cos 60^\circ\right] \cos 70^\circ$

$= \dfrac{1}{2} \cos 70^\circ \cos 40^\circ + \dfrac{1}{2} \cos 60^\circ \cos 70^\circ$

$= \dfrac{1}{4} \left[2 \cos 70^\circ \cos 40^\circ\right] + \dfrac{1}{2} \times \dfrac{1}{2} \times \cos 70^\circ$

$= \dfrac{1}{4} \left[\cos \left(70^\circ - 40^\circ\right) + \cos \left(70^\circ + 40^\circ\right)\right] + \dfrac{1}{4} \times \cos 70^\circ$

$= \dfrac{1}{4} \left[\cos 30^\circ + \cos 110^\circ\right] + \dfrac{1}{4} \cos 70^\circ$

$= \dfrac{1}{4} \times \dfrac{\sqrt{3}}{2} + \dfrac{1}{4} \times \cos 110^\circ + \dfrac{1}{4} \cos 70^\circ$

$= \dfrac{\sqrt{3}}{8} + \dfrac{1}{4} \left[\cos 110^\circ + \cos 70^\circ\right]$

$= \dfrac{\sqrt{3}}{8} + \dfrac{1}{4} \left[\cos \left(180^\circ - 70^\circ\right) + \cos 70^\circ\right]$

$= \dfrac{\sqrt{3}}{8} + \dfrac{1}{4} \left[\cos \left(- 70^\circ\right) + \cos 70^\circ\right]$

$= \dfrac{\sqrt{3}}{8} + \dfrac{1}{4} \left[- \cos 70^\circ + \cos 70 ^\circ\right]$

$= \dfrac{\sqrt{3}}{8}$