Trigonometry - Identity Transformation of Trigonometric Expressions

Prove the identity: $\cos 2 \alpha - \cos 3 \alpha - \cos 4 \alpha + \cos 5 \alpha = - 4 \sin \left(\dfrac{\alpha}{2}\right) \sin \alpha \cos \left(\dfrac{7 \alpha}{2}\right)$


$\begin{aligned} LHS & = \cos 2 \alpha - \cos 3 \alpha - \cos 4 \alpha + \cos 5 \alpha \\\\ & = \left(\cos 5 \alpha + \cos 2 \alpha\right) - \left(\cos 4 \alpha + \cos 3 \alpha\right) \\\\ & = 2 \cos \left(\dfrac{5 \alpha + 2 \alpha}{2}\right) \cos \left(\dfrac{5 \alpha - 2 \alpha}{2}\right) - 2 \cos \left(\dfrac{4 \alpha + 3 \alpha}{2}\right) \cos \left(\dfrac{4 \alpha - 3 \alpha}{2}\right) \\\\ & = 2 \cos \left(\dfrac{7 \alpha}{2}\right) \cos \left(\dfrac{3 \alpha}{2}\right) - 2 \cos \left(\dfrac{7 \alpha}{2}\right) \cos \left(\dfrac{\alpha}{2}\right) \\\\ & = 2 \cos \left(\dfrac{7 \alpha}{2}\right) \left[\cos \left(\dfrac{3 \alpha}{2}\right) - \cos \left(\dfrac{\alpha}{2}\right)\right] \\\\ & = 2 \cos \left(\dfrac{7 \alpha}{2}\right) \left[- 2 \sin \left(\dfrac{\dfrac{3 \alpha}{2} - \dfrac{\alpha}{2}}{2}\right) \sin \left(\dfrac{\dfrac{3 \alpha}{2} + \dfrac{\alpha}{2}}{2}\right) \right] \\\\ & = - 4 \cos \left(\dfrac{7 \alpha}{2}\right) \sin \left(\dfrac{\alpha}{2}\right) \sin \left(\dfrac{2 \alpha}{2}\right) \\\\ & = - 4 \sin \left(\dfrac{\alpha}{2}\right) \sin \alpha \cos \left(\dfrac{7 \alpha}{2}\right) = RHS \end{aligned}$

Hence proved.