Trigonometry - Identity Transformation of Trigonometric Expressions

Prove the identity: $2 \left(\sin^6 \alpha + \cos^6 \alpha\right) - 3 \left(\sin^4 \alpha + \cos^4 \alpha\right) + 1 = 0$


$\begin{aligned} LHS & = 2 \left(\sin^6 \alpha + \cos^6 \alpha\right) - 3 \left(\sin^4 \alpha + \cos^4 \alpha\right) + 1 \\\\ & = 2 \left[\left(\sin^2 \alpha\right)^3 + \left(\cos^2 \alpha\right)^3\right] - 3 \sin^4 \alpha - 3 \cos^4 \alpha + 1 \\\\ & = 2 \left[\left(\sin^2 \alpha + \cos^2 \alpha\right) \left(\sin^4 \alpha - \sin^2 \alpha \cos^2 \alpha + \cos^4 \alpha\right)\right] \\ & \hspace{6cm} - 3 \sin^4 \alpha - 3 \cos^4 \alpha + 1 \\\\ & = 2 \sin^4 \alpha - 2 \sin^2 \alpha \cos^2 \alpha + 2 \cos^4 \alpha - 3 \sin^4 \alpha - 3 \cos^4 \alpha + 1 \\\\ & = - \sin^4 \alpha - 2 \sin^2 \alpha \cos^2 \alpha - \cos^4 \alpha + 1 \\\\ & = - \left[\sin^4 \alpha + 2 \sin^2 \alpha \cos^2 \alpha + \cos^4 \alpha\right] + 1 \\\\ & = - \left[\sin^2 \alpha + \cos^2 \alpha\right]^2 + 1 \\\\ & = - 1 + 1 \\\\ & = 0 = RHS \end{aligned}$

Hence proved.