Trigonometry - Identity Transformation of Trigonometric Expressions

Prove the identity: $\cos^6 \alpha - \sin^6 \alpha = \dfrac{\left(3 + \cos^2 2 \alpha\right) \cos 2 \alpha}{4}$


$\begin{aligned} LHS & = \cos^6 \alpha - \sin^6 \alpha \\\\ & = \left(\cos^2 \alpha\right)^3 - \left(\sin^2 \alpha\right)^3 \\\\ & = \left[\cos^2 \alpha - \sin^2 \alpha\right] \left[\cos^4 \alpha + \cos^2 \alpha \sin^2 \alpha + \sin^4 \alpha\right] \\\\ & = \cos 2 \alpha \times \left[\cos^2 \alpha \left(\cos^2 \alpha + \sin^2 \alpha\right) + \sin^4 \alpha\right] \\\\ & = \cos 2 \alpha \times \left[\cos^2 \alpha + \sin^4 \alpha\right] \\\\ & = \cos 2 \alpha \times \left[\cos^2 \alpha + \left(\sin^2 \alpha\right)^2 \right] \\\\ & = \cos 2 \alpha \times \left[\cos^2 \alpha + \left(\dfrac{1 - \cos 2 \alpha}{2}\right)^2\right] \\\\ & = \cos 2 \alpha \times \left[\cos^2 \alpha + \dfrac{1 - 2 \cos 2 \alpha + \cos^2 2 \alpha}{4}\right] \\\\ & = \cos 2 \alpha \times \left[\dfrac{4 \cos^2 \alpha + 1 - 2 \left(2 \cos^2 \alpha - 1\right) + \cos^2 2 \alpha}{4}\right] \\\\ & = \cos 2 \alpha \times \left[\dfrac{4 \cos^2 \alpha + 1 - 4 \cos^2 \alpha + 2 + \cos^2 2 \alpha}{4}\right] \\\\ & = \cos 2 \alpha \times \left[\dfrac{3 + \cos^2 2 \alpha}{4}\right] = RHS \end{aligned}$

Hence proved.