Trigonometry - Identity Transformation of Trigonometric Expressions

Prove the identity: $\tan \left(\dfrac{\pi}{4} + \alpha\right) = \dfrac{1 + \sin 2 \alpha}{\cos 2 \alpha}$


$\begin{aligned} LHS & = \tan \left(\dfrac{\pi}{4} + \alpha\right) \\\\ & = \dfrac{\tan \dfrac{\pi}{4} + \tan \alpha}{1 - \tan \dfrac{\pi}{4} \tan \alpha} \\\\ & = \dfrac{1 + \tan \alpha}{1 - \tan \alpha} \\\\ & = \dfrac{1 + \dfrac{\sin \alpha}{\cos \alpha}}{1 - \dfrac{\sin \alpha}{\cos \alpha}} \\\\ & = \dfrac{\cos \alpha + \sin \alpha}{\cos \alpha - \sin \alpha} \\\\ & = \dfrac{\left(\cos \alpha + \sin \alpha\right)^2}{\left(\cos \alpha - \sin \alpha\right) \left(\cos \alpha + \sin \alpha\right)} \\\\ & = \dfrac{\sin^2 + \cos^2 \alpha + 2 \sin \alpha \cos \alpha}{\cos^2 \alpha - \sin^2 \alpha} \\\\ & = \dfrac{1 + \sin 2 \alpha}{\cos 2 \alpha} = RHS \end{aligned}$

Hence proved.