Trigonometry - Identity Transformation of Trigonometric Expressions

Prove the identity: $\left(\sin \alpha - \sin \beta\right) \left(\sin \alpha + \sin \beta\right) = \sin \left(\alpha - \beta\right) \sin \left(\alpha + \beta\right)$


$\begin{aligned} RHS & = \sin \left(\alpha - \beta\right) \sin \left(\alpha + \beta\right) \\\\ & = \left(\sin \alpha \cos \beta - \cos \alpha \sin \beta\right) \left(\sin \alpha \cos \beta + \cos \alpha \sin \beta\right) \\\\ & = \sin^2 \alpha \cos^2 \beta - \cos^2 \alpha \sin^2 \beta \\\\ & = \sin^2 \alpha \left(1 - \sin^2 \beta\right) - \sin^2 \beta \left(1 - \sin^2 \alpha\right) \\\\ & = \sin^2 \alpha - \sin^2 \alpha \sin^2 \beta - \sin^2 \beta + \sin^2 \alpha \sin^2 \beta \\\\ & = \sin^2 \alpha - \sin^2 \beta \\\\ & = \left(\sin \alpha - \sin \beta\right) \left(\sin \alpha + \sin \beta\right) = LHS \end{aligned}$

Hence proved.