Trigonometry - Identity Transformation of Trigonometric Expressions

Prove the identity: $\dfrac{\cos^2 \beta \left(\tan^2 \alpha - \tan^2 \beta\right)}{\sec^2 \alpha} = \sin \left(\alpha + \beta\right) \sin \left(\alpha - \beta\right)$


$\begin{aligned} LHS & = \dfrac{\cos^2 \beta \left(\tan^2 \alpha - \tan^2 \beta\right)}{\sec^2 \alpha} \\\\ & = \cos^2 \alpha \cos^2 \beta \left(\dfrac{\sin^2 \alpha}{\cos^2 \alpha} - \dfrac{\sin^2 \beta}{\cos^2 \beta}\right) \\\\ & = \dfrac{\cos^2 \alpha \cos^2 \beta \left(\sin^2 \alpha \cos^2 \beta - \sin^2 \beta \cos^2 \alpha\right)}{\cos^2 \alpha \cos^2 \beta} \\\\ & = \sin^2 \alpha \cos^2 \beta - \sin^2 \beta \cos^2 \alpha \\\\ & = \left(\sin \alpha \cos \beta\right)^2 - \left(\sin \beta \cos \alpha\right)^2 \\\\ & = \left(\sin \alpha \cos \beta + \sin \beta \cos \alpha\right) \left(\sin \alpha \cos \beta - \sin \beta \cos \alpha\right) \\\\ & = \sin \left(\alpha + \beta\right) \sin \left(\alpha - \beta\right) = RHS \end{aligned}$

Hence proved.