Trigonometry - Identity Transformation of Trigonometric Expressions

Prove the identity: $\dfrac{\tan \left(x - \dfrac{\pi}{2}\right) \cos \left(\dfrac{3 \pi}{2} + x\right) - \sin^3 \left(\dfrac{7 \pi}{2} - x\right)}{\cos \left(x - \dfrac{\pi}{2}\right) \tan \left(\dfrac{3 \pi}{2} + x\right)} = \sin^2 x$


$\begin{aligned} \tan \left(x - \dfrac{\pi}{2}\right) & = \tan \left[- \left(\dfrac{\pi}{2} - x\right)\right] \\\\ & = - \tan \left(\dfrac{\pi}{2} - x\right) \\\\ & = - \cot x \\\\ & = \dfrac{- \cos x}{\sin x} \;\;\; \cdots \; (1) \end{aligned}$

$\begin{aligned} \cos \left(\dfrac{3 \pi}{2} + x\right) & = \cos \left[\pi + \left(\dfrac{\pi}{2} + x\right)\right] \\\\ & = -\cos \left(\dfrac{\pi}{2} + x\right) \\\\ & = - \left(- \sin x\right) \\\\ & = \sin x \;\;\; \cdots \; (2) \end{aligned}$

$\begin{aligned} \sin \left(\dfrac{7 \pi}{2} - x\right) & = \sin \left[\dfrac{\pi}{2} + \left(3 \pi - x\right)\right] \\\\ & = \cos \left(3 \pi - x\right) \\\\ & = - \cos x \;\;\; \cdots \; (3) \end{aligned}$

$\begin{aligned} \cos \left(x - \dfrac{\pi}{2}\right) & = \cos \left[- \left(\dfrac{\pi}{2} - x\right)\right] \\\\ & = \cos \left(\dfrac{\pi}{2} - x\right) \\\\ & = \sin x \;\;\; \cdots \; (4) \end{aligned}$

$\begin{aligned} \tan \left(\dfrac{3 \pi}{2} + x\right) & = \tan \left[\pi + \left(\dfrac{\pi}{2} + x\right)\right] \\\\ & = \tan \left(\dfrac{\pi}{2} + x\right) \\\\ & = \dfrac{- \cos x}{\sin x} \;\;\; \cdots \; (5) \end{aligned}$

$\begin{aligned} \therefore \; LHS & = \dfrac{\tan \left(x - \dfrac{\pi}{2}\right) \cos \left(\dfrac{3 \pi}{2} + x\right) - \sin^3 \left(\dfrac{7 \pi}{2} - x\right)}{\cos \left(x - \dfrac{\pi}{2}\right) \tan \left(\dfrac{3 \pi}{2} + x\right)} \\\\ & = \dfrac{\dfrac{- \cos x}{\sin x} \times \sin x - \left(- \cos x\right)^3}{\sin x \times \left(\dfrac{- \cos x}{\sin x}\right)} \;\;\; \left[\text{In view of equations } (1) \cdots (5) \right] \\\\ & = \dfrac{- \cos x + \cos^3 x}{- \cos x} \\\\ & = 1 - \cos^2 x \\\\ & = \sin^2 x = RHS \end{aligned}$

Hence proved.