Trigonometry - Identity Transformation of Trigonometric Expressions

Prove the identity: $\dfrac{\tan 2x \tan x}{\tan 2x - \tan x} = \sin 2x$


$\begin{aligned} LHS & = \dfrac{\tan 2x \tan x}{\tan 2x - \tan x} \\\\ & = \dfrac{\dfrac{2 \tan x}{1 - \tan^2 x} \times \tan x}{\dfrac{2 \tan x}{1 - \tan^2 x} - \tan x} \\\\ & = \dfrac{2 \tan^2 x}{2 \tan x - \tan x + \tan^3 x} \\\\ & = \dfrac{2 \tan^2 x}{\tan x + \tan^3 x} \\\\ & = \dfrac{2 \tan^2 x}{\tan x \left(1 + \tan^2 x\right)} \\\\ & = \dfrac{2 \tan x}{\sec^2 x} \\\\ & = \dfrac{\dfrac{2 \sin x}{\cos x}}{\dfrac{1}{\cos^2 x}} \\\\ & = 2 \sin x \cos x \\\\ & = \sin 2x = RHS \end{aligned}$

Hence proved.