Trigonometry - Identity Transformation of Trigonometric Expressions

Prove the identity: $\left(1 + \tan \beta \tan 2 \beta\right) \sin 2 \beta = \tan 2 \beta$


To prove that (TPT): $\;\;\;$ $\left(1 + \tan \beta \tan 2 \beta\right) \sin 2 \beta = \tan 2 \beta$

i.e. $\;$ TPT $\;\;\;$ $1 + \tan \beta \tan 2 \beta = \dfrac{\tan 2 \beta}{\sin 2 \beta}$

i.e. $\;$ TPT $\;\;\;$ $1 + \tan \beta \tan 2 \beta = \dfrac{\sin 2 \beta}{\cos 2 \beta} \times \dfrac{1}{\sin 2\beta}$

i.e. $\;$ TPT $\;\;\;$ $\left(1 + \tan \beta \tan 2 \beta\right) \cos 2 \beta = 1$

$\begin{aligned} LHS & = \left(1 + \tan \beta \tan 2 \beta\right) \cos 2 \beta \\\\ & = \cos 2 \beta + \dfrac{\sin \beta}{\cos \beta} \times \dfrac{\sin 2 \beta}{\cos 2 \beta} \times \cos 2 \beta \\\\ & = \cos 2 \beta + \dfrac{\sin \beta 2 \sin \beta \cos \beta}{\cos \beta} \\\\ & = \cos^2 \beta - \sin^2 \beta + 2 \sin^2 \beta \\\\ & = \cos^2 \beta + \sin^2 \beta \\\\ & = 1 = RHS \end{aligned}$

Hence proved.