Trigonometry - Identity Transformation of Trigonometric Expressions

Prove the identity: $\sin^2 \left(45^\circ + \alpha\right) - \sin^2 \left(30^\circ - \alpha\right) - \sin 15^\circ \cos \left(15^\circ + 2 \alpha\right) = \sin 2 \alpha$


$\begin{aligned} \sin^2 A - \sin^2 B & = \left(\sin A + \sin B\right) \left(\sin A - \sin B\right) \\\\ & = 2 \sin \left(\dfrac{A + B}{2}\right) \cos \left(\dfrac{A - B}{2}\right) \\ & \hspace{2cm} \times 2 \sin \left(\dfrac{A - B}{2}\right) \cos \left(\dfrac{A + B}{2}\right) \\\\ & = 2 \sin \left(\dfrac{A + B}{2}\right) \cos \left(\dfrac{A + B}{2}\right) \\ & \hspace{2cm} \times 2 \sin \left(\dfrac{A - B}{2}\right) \cos \left(\dfrac{A - B}{2}\right) \\\\ & = \sin \left(A + B\right) \times \sin \left(A - B\right) \end{aligned}$

$\begin{aligned} \therefore \; \sin^2 \left(45^\circ + \alpha\right) - \sin^2 \left(30^\circ - \alpha\right) & = \sin \left(45^\circ + \alpha + 30^\circ - \alpha\right) \\ & \hspace{2cm} \sin \left(45^\circ + \alpha - 30^\circ + \alpha\right) \\\\ & = \sin 75^\circ \sin \left(15^\circ + 2 \alpha\right) \\\\ & = \sin \left(90^\circ - 15^\circ\right) \times \sin \left(15^\circ + 2 \alpha\right) \\\\ & = \cos 15^\circ \sin \left(15^\circ + 2 \alpha\right) \end{aligned}$

$\begin{aligned} \therefore \; LHS & = \sin^2 \left(45^\circ + \alpha\right) - \sin^2 \left(30^\circ - \alpha\right) - \sin 15^\circ \cos \left(15^\circ + 2 \alpha\right) \\\\ & = \cos 15^\circ \sin \left(15^\circ + 2 \alpha\right) - \sin 15^\circ \cos \left(15^\circ + 2 \alpha\right) \\\\ & = \sin \left(15^\circ + 2 \alpha - 15^\circ\right) \\\\ & = \sin 2 \alpha = RHS \end{aligned}$

Hence proved.