Processing math: 100%

Trigonometry - Identity Transformation of Trigonometric Expressions

Prove the identity: sinα+2sin3α+sin5α=4sin3αcos2α


LHS=sinα+2sin3α+sin5α=(sinα+sin3α)+(sin3α+sin5α)=2sin(3α+α2)cos(3αα2)+2sin(5α+3α2)cos(5α3α2)=2sin2αcosα+2sin4αcosα=2cosα(sin2α+sin4α)=2cosα[2sin(4α+2α2)cos(4α2α2)]=4sin3αcos2α=RHS

Hence proved.