Trigonometry - Identity Transformation of Trigonometric Expressions

Prove the identity: $\dfrac{1}{2} \left(\cos t + \sqrt{3} \sin t\right) = \cos \left(\dfrac{\pi}{3} - t\right)$


$\begin{aligned} LHS & = \dfrac{1}{2} \left(\cos t + \sqrt{3} \sin t\right) \\\\ & = \dfrac{1}{2} \cos t + \dfrac{\sqrt{3}}{2} \sin t \\\\ & = \cos \dfrac{\pi}{3} \cos t + \sin \dfrac{\pi}{3} \sin t \\\\ & = \cos \left(\dfrac{\pi}{3} - t\right) = RHS \end{aligned}$

Hence proved.