Trigonometry - Identity Transformation of Trigonometric Expressions

Prove the identity: $\left(\dfrac{1 + \sin \alpha}{1 + \cos \alpha}\right) \left(\dfrac{1 + \sec \alpha}{1 + \text{cosec} \alpha}\right) = \tan \alpha$


$\begin{aligned} LHS & = \left(\dfrac{1 + \sin \alpha}{1 + \cos \alpha}\right) \left(\dfrac{1 + \sec \alpha}{1 + \text{cosec} \alpha}\right) \\\\ & = \left(\dfrac{1 + \sin \alpha}{1 + \cos \alpha}\right) \left(\dfrac{1 + \dfrac{1}{\cos \alpha}}{1 + \dfrac{1}{\sin \alpha}}\right) \\\\ & = \left(\dfrac{1 + \sin \alpha}{1 + \cos \alpha}\right) \left[\dfrac{\left(1 + \cos \alpha\right) /\ \cos \alpha}{\left(1 + \sin \alpha\right) /\ \sin \alpha}\right] \\\\ & = \dfrac{\sin \alpha}{\cos \alpha} \\\\ & = \tan \alpha = RHS \end{aligned}$

Hence proved.