Algebra - Systems of Exponential and Logarithmic Equations

Solve the following system of equations: $\begin{cases} 4^{x+y} = 128 \\ 5^{3x-2y-3} = 1 \end{cases}$


Given system of equations:

$4^{x+y} = 128$ $\;\;\; \cdots \; (1)$

$5^{3x-2y-3} = 1$ $\;\;\; \cdots \; (2)$

Equation $(1)$ $\implies$ $x + y = \log_4 128$

i.e. $\;$ $x + y = \log_4 2^7$

i.e. $\;$ $x + y = 7 \log_4 2$

i.e. $\;$ $x + y = 7 \log_4 4^{\frac{1}{2}}$

i.e. $\;$ $x + y = \dfrac{7}{2} \log_4 4$

i.e. $\;$ $x + y = \dfrac{7}{2}$

i.e. $\;$ $2x + 2y = 7$ $\;\;\; \cdots \; (3)$

Equation $(2)$ $\implies$ $3x - 2y - 3 = \log_5 1$

i.e. $\;$ $3x - 2y - 3 = 0$

i.e. $\;$ $3x - 2y = 3$ $\;\;\; \cdots \; (4)$

Solving equations $(3)$ and $(4)$ simultaneously [adding equations $(3)$ and $(4)$] gives

$5x = 10$ $\implies$ $x = 2$

Substituting the value of $x$ in equation $(3)$ gives

$y = \dfrac{7 - 4}{2} = \dfrac{3}{2}$

$\therefore \;$ The solution to the given system of equations is $\;\;$ $x = \left\{\left(2, \dfrac{3}{2}\right) \right\}$