Algebra - Logarithmic Equations

Solve the equation: $\;$ $5^{\log x} = 50 - x^{\log 5}$


Given equation: $\;\;$ $5^{\log x} = 50 - x^{\log 5}$ $\;\;\; \cdots \; (1)$

Let $\;$ $5^{\log x} = p$

Then, by definition $\;$ $\log_5 p = \log x$ $\;\;\; \cdots \; (2)$

$\implies$ $x = 10^{\log_5 p}$ $\;\;\; \cdots \; (3)$

In view of equation $(3)$, equation $(1)$ becomes

$p = 50 - \left(10^{\log_5 p}\right)^{\log 5}$

i.e. $\;$ $p = 50 - \left[10^{\left(\frac{\log p}{\log 5}\right)}\right]^{\log 5}$

i.e. $\;$ $p = 50 - 10^{\log p}$

i.e. $\;$ $p = 50 - p$

i.e. $\;$ $2p = 50$ $\implies$ $p = 25$

Substituting the value of $p$ in equation $(2)$ gives

$\log_5 25 = \log x$

i.e. $\;$ $\log x = \log_5 5^2 = 2 \log_5 5 = 2$

$\implies$ $x = 10^2 = 100$

$\therefore \;$ The solution to the given equation is $\;\;$ $x = \left\{100 \right\}$