Algebra - Logarithmic Equations

Solve the equation: $\;$ $3 \sqrt{\log_2 x} - \log_2 8x + 1 = 0$


Given equation: $\;\;$ $3 \sqrt{\log_2 x} - \log_2 8x + 1 = 0$

i.e. $\;$ $3 \sqrt{\log_2 x} - \left(\log_2 8 + \log_2 x\right) + 1 = 0$

i.e. $\;$ $3 \sqrt{\log_2 x} - \log_2 2^3 - \log_2 x + 1 = 0$

i.e. $\;$ $3 \sqrt{\log_2 x} - 3 \log_2 2 - \log_2 x + 1 = 0$

i.e. $\;$ $3 \sqrt{\log_2 x} - 3 - \log_2 x + 1 = 0$

i.e. $\;$ $3 \sqrt{\log_2 x} - \log_2 x - 2 = 0$ $\;\;\; \cdots \; (1)$

Let $\;$ $\sqrt{\log_2 x} = p$ $\;\;\; \cdots \; (2)$

Then in view of equation $(2)$, equation $(1)$ becomes

$3p - p^2 - 2 = 0$

i.e. $\;$ $p^2 - 3p + 2 = 0$

i.e. $\;$ $\left(p - 1\right) \left(p - 2\right) = 0$

$\implies$ $p = 1$ $\;$ or $\;$ $p = 2$

Substituting the value of $p$ in equation $(2)$ gives

when $\;$ $p = 1$, $\;$ $\sqrt{\log_2 x} = 1$

i.e. $\;$ $\log_2 x = 1$ $\implies$ $x = 2^1 = 2$

when $\;$ $p = 2$, $\;$ $\sqrt{\log_2 x} = 2$

i.e. $\;$ $\log_2 x = 4$ $\implies$ $x = 2^4 = 16$

$\therefore \;$ The solution to the given equation is $\;\;$ $x = \left\{2, \; 16 \right\}$