Algebra - Logarithmic Equations

Solve the equation: $\;$ $\log_3 \left(4 \times 3^x - 1\right) = 2x + 1$


Given equation: $\;\;$ $\log_3 \left(4 \times 3^x - 1\right) = 2x + 1$

i.e. $\;$ $4 \times 3^x - 1 = 3^{2x+1}$

i.e. $\;$ $4 \times 3^x - 1 = 3^{2x} \times 3^1$

i.e. $\;$ $3 \times \left(3^x\right)^2 - 4 \times 3^x + 1 = 0$ $\;\;\; \cdots \; (1)$

Let $\;$ $3^x = p$ $\;\;\; \cdots \; (2)$

Then equation $(1)$ becomes

$3p^2 - 4p + 1 = 0$

i.e. $\;$ $\left(p - 1\right) \left(3p - 1\right) = 0$

i.e. $\;$ $p = 1$ $\;$ or $\;$ $p = \dfrac{1}{3}$

Substituting the values of $p$ in equation $(2)$ give

when $\;$ $p = 1$, $\;$ then $\;$ $3^x = 1 = 3^0$ $\implies$ $x = 0$

when $\;$ $p = \dfrac{1}{3}$, $\;$ then $\;$ $3^x = \dfrac{1}{3} = 3^{-1}$ $\implies$ $x = -1$

$\therefore \;$ The solution to the given equation is $\;\;$ $x = \left\{-1, \; 0 \right\}$