Algebra - Logarithmic Equations

Solve the equation: $\;$ $1 + 2 \log_{\left(x + 2\right)} 5 = \log_5 \left(x + 2\right)$


Given equation: $\;\;$ $1 + 2 \log_{\left(x + 2\right)} 5 = \log_5 \left(x + 2\right)$

i.e. $\;$ $1 + \dfrac{2}{\log_5 \left(x + 2\right)} = \log_5 \left(x + 2\right)$ $\;\;\; \cdots \; (1)$

Let $\;$ $\log_5 \left(x + 2\right) = p$ $\;\;\; \cdots \; (2)$

Then equation $(1)$ becomes

$1 + \dfrac{2}{p} = p$

i.e. $\;$ $p^2 - p -2 = 0$

i.e. $\;$ $\left(p - 2\right) \left(p + 1\right) = 0$

i.e. $\;$ $p = 2$ $\;$ or $\;$ $p = -1$

Substituting the value of $p$ in equation $(2)$ gives

when $\;$ $p = 2$, $\;$ then $\;$ $\log_5 \left(x + 2\right) = 2$

i.e. $\;$ $x + 2 = 5^2 = 25$ $\implies$ $x = 23$

when $\;$ $p = -1$, $\;$ then $\;$ $\log_5 \left(x + 2\right) = -1$

i.e. $\;$ $x + 2 = 5^{-1} = \dfrac{1}{5}$ $\implies$ $x = \dfrac{-9}{5}$

$\therefore \;$ The solution to the given equation is $\;\;$ $x = \left\{\dfrac{-9}{5}, \; 23 \right\}$