Algebra - Logarithmic Equations

Solve the equation: $\;$ $x^{\log_{\sqrt{x}} \left(x - 2\right)} = 9$


Given equation: $\;\;$ $x^{\log_{\sqrt{x}} \left(x - 2\right)} = 9$ $\;\;\;\; \cdots \; (1)$

Taking log to base $\sqrt{x}$ on either side of equation $(1)$ gives

$\log_{\sqrt{x}} \left[x^{\log_{\sqrt{x}}\left(x - 2\right)}\right] = \log_{\sqrt{x}} 9$

i.e. $\;$ $\log_{\sqrt{x}} \left(x - 2\right) \log_{\sqrt{x}} x = \log_{\sqrt{x}} 9$

i.e. $\;$ $\log_{\sqrt{x}} \left(x-2\right) \log_{\sqrt{x}} \left(\sqrt{x}\right)^2 = \log_{\sqrt{x}} 3^2$

i.e. $\;$ $2 \log_{\sqrt{x}} \left(x-2\right) \log_{\sqrt{x}} \sqrt{x} = 2\log_{\sqrt{x}} 3$

i.e. $\;$ $\log_{\sqrt{x}} \left(x-2\right) = \log_{\sqrt{x}} 3$ $\;\;\; \cdots \; (2)$

Taking anti-log to base $\sqrt{x}$ on either side of equation $(2)$ gives

$x - 2 = 3$ $\implies$ $x = 5$

$\therefore \;$ The solution to the given equation is $\;\;$ $x = \left\{5 \right\}$