Algebra - Logarithmic Equations

Solve the equation: $\;$ $\log_{x - 1} 3 = 2$


Given equation: $\;\;$ $\log_{x - 1} 3 = 2$

i.e. $\;$ $\left(x - 1\right)^2 = 3$

i.e. $\;$ $x^2 - 2x + 1 = 3$

i.e. $\;$ $x^2 - 2x - 2 = 0$

i.e. $\;$ $x = \dfrac{2 \pm \sqrt{4 + 8}}{2} = \dfrac{2 \pm \sqrt{12}}{2} = \dfrac{2 \pm 2 \sqrt{3}}{2}$

i.e. $\;$ $x = 1 \pm \sqrt{3}$

When $\;$ $x = 1 - \sqrt{3}$, $\;$ then we have

$\log_{1 - \sqrt{3} - 1} 3 = 2$ $\implies$ $\log_{-\sqrt{3}} 3 = 2$

But base of a logarithm cannot be negative.

$\therefore \;$ The solution to the given equation is $\;\;$ $x = \left\{1 + \sqrt{3} \right\}$