Algebra - Exponential Equations

Solve the equation: $\;$ $\left[\left(2^{\sqrt{x} + 3}\right)^{\frac{1}{2 \sqrt{x}}}\right]^{\frac{2}{\sqrt{x} - 1}} = 2$


Given equation: $\;\;$ $\left[\left(2^{\sqrt{x} + 3}\right)^{\frac{1}{2 \sqrt{x}}}\right]^{\frac{2}{\sqrt{x} - 1}} = 2$

i.e. $\;$ $2^{\frac{\sqrt{x} + 3}{\sqrt{x} \left(\sqrt{x} - 1\right)}} = 2^1$

$\implies$ $\dfrac{\sqrt{x} + 3}{x - \sqrt{x}} = 1$

i.e. $\;$ $\sqrt{x} + 3 = x - \sqrt{x}$

i.e. $\;$ $x - 2 \sqrt{x} - 3 = 0$ $\;\;\; \cdots \; (1)$

Let $\;$ $\sqrt{x} = p$ $\;\;\; \cdots \; (2)$

Then equation $(1)$ becomes

$p^2 - 2p - 3 = 0$

i.e. $\;$ $\left(p - 3\right) \left(p + 1\right) = 0$

i.e. $\;$ $p = 3$ $\;$ or $\;$ $p = -1$

Substituting the value of $p$ in equation $(2)$ gives

when $\;$ $p = 3$, $\;$ $\sqrt{x} = 3$ $\implies$ $x = 9$

when $\;$ $p = -1$, $\;$ $\sqrt{x} = -1$

But square root of a number cannot be negative.

$\implies$ $p = -1$ $\;$ is not a valid solution.

$\therefore \;$ The solution to the given equation is $\;\;$ $x = \left\{9 \right\}$