Algebra - Exponential Equations

Solve the equation: $\;$ $4^{\frac{1}{x} - 2} = \dfrac{\log \sqrt{10}}{2}$


Given equation: $\;\;$ $4^{\frac{1}{x} - 2} = \dfrac{\log \sqrt{10}}{2}$

i.e. $\;$ $4^{\frac{1}{x} - 2} = \dfrac{1}{2} \times \log_{10} {10}^{\frac{1}{2}}$

i.e. $\;$ $4^{\frac{1}{x} - 2} = \dfrac{1}{2} \times \dfrac{1}{2} \times \log_{10} 10$

i.e. $\;$ $4^{\frac{1}{x} - 2} = \dfrac{1}{4} \times 1$

i.e. $\;$ $4^{\frac{1}{x} - 2} \times 4^1 = 1$

i.e. $\;$ $4^{\frac{1}{x} - 1} = 4^0$

$\implies$ $\dfrac{1}{x} - 1 = 0$

i.e. $\;$ $\dfrac{1}{x} = 1$ $\implies$ $x = 1$

$\therefore \;$ The solution to the given equation is $\;\;$ $x = \left\{1 \right\}$