Solve the equation: $\;$ $\left(3^{x^2 - 7.2x + 3.9} - 9 \sqrt{3}\right) \log \left(7 - x\right) = 0$
Given equation: $\;\;$  $\left(3^{x^2 - 7.2x + 3.9} - 9 \sqrt{3}\right) \log \left(7 - x\right) = 0$ $\;\;\; \cdots \; (1)$ 
$\implies$ $3^{x^2 - 7.2x + 3.9} - 9 \sqrt{3} = 0$ $\;$ or $\;$ $\log \left(7 - x\right) = 0$ 
i.e. $\;$ $3^{x^2 - 7.2x + 3.9} = 9 \sqrt{3}$ $\;\;\; \cdots \; (2)$ $\;$ or $\;$ $\log \left(7 - x\right) = \log \left(1\right)$ $\;\;\; \cdots \; (3)$ 
Consider equation $(2)$. 
We have, $\;$ $3^{x^2 - 7.2x + 3.9} = 3^2 \times 3^{\frac{1}{2}} = 3^{\frac{5}{2}}$ 
$\implies$ $x^2 - 7.2x + 3.9 = \dfrac{5}{2}$ 
i.e. $\;$ $x^2 - 7.2x + 1.4 = 0$ 
i.e. $\;$ $5x^2 - 36x + 7 = 0$ 
i.e. $\;$ $\left(x - 7\right) \left(5x - 1\right) = 0$ 
i.e. $\;$ $x = 7$ $\;$ or $\;$ $x = \dfrac{1}{5}$ 
When $\;$ $x = 7$, $\;$ equation $(1)$ will have the term $\;$ $\log \left(7 - 7\right) = \log 0$ 
But $\;$ $\log 0$ $\;$ is not defined. 
Therefore, $x = 7$ is not a valid solution. 
Consider equation $(3)$. 
We have, $\;$ $7 - x = 1$ $\implies$ $x = 6$ 
$\therefore \;$ The solution to the given equation is $\;\;$ $x = \left\{\dfrac{1}{5}, \; 6\right\}$