Algebra - Exponential Equations

Solve the equation: $\;$ $3^{2x+5} = 3^{x+2} + 2$


Given equation: $\;\;$ $3^{2x+5} = 3^{x+2} + 2$

i.e. $\;$ $3^{2x} \times 3^5 - 3^x \times 3^2 - 2 = 0$

i.e. $\;$ $243 \times \left(3^x\right)^2 - 9 \times 3^x - 2 = 0$ $\;\;\; \cdots \; (1)$

Let $\;$ $3^x = p$ $\;\;\; \cdots \; (2)$

Then equation $(1)$ becomes

$243 p^2 - 9p -2 = 0$

i.e. $\;$ $\left(27p + 2\right) \left(9p - 1\right) = 0$

i.e. $\;$ $p = \dfrac{-2}{27}$ $\;$ or $\;$ $p = \dfrac{1}{9}$

Substituing the value of $p$ in equation $(2)$ gives

when $\;$ $p = \dfrac{-2}{27}$, $\;$ then $\;$ $3^x = \dfrac{-2}{27}$

$\implies$ $x = \log_3 \left(\dfrac{-2}{27}\right)$

But logarithm of a negative number is not defined.

$\therefore \;$ $p = \dfrac{-2}{27}$ $\;$ is not a valid solution.

when $\;$ $p = \dfrac{1}{9}$, $\;$ then $\;$ $3^x = \dfrac{1}{9} = 3^{-2}$ $\implies$ $x = -2$

$\therefore \;$ The solution to the given equation is $\;\;$ $x = \left\{-2 \right\}$