Algebra - System of Equations and Inequalities

Solve the following system of equations: $\;$ $\sqrt{\dfrac{x}{y}} - \sqrt{\dfrac{y}{x}} = \dfrac{3}{2}$, $\;$ $x + y + xy = 9$


Given system of equations:

$\sqrt{\dfrac{x}{y}} - \sqrt{\dfrac{y}{x}} = \dfrac{3}{2}$ $\;\;\; \cdots \; (1)$, $\;\;$ $x + y + xy = 9$ $\;\;\; \cdots \; (2)$

Let $\;$ $\sqrt{\dfrac{x}{y}} = p$ $\;\;\; \cdots \; (3a)$

Then $\;$ $\sqrt{\dfrac{y}{x}} = \dfrac{1}{p}$ $\;\;\; \cdots \; (3b)$

In view of equations $(3a)$ and $(3b)$, equation $(1)$ becomes

$p - \dfrac{1}{p} = \dfrac{3}{2}$

i.e. $\;$ $p^2 - 1 = \dfrac{3}{2} p$

i.e. $\;$ $2p^2 - 3p - 2 = 0$

i.e. $\;$ $\left(p - 2\right) \left(2p + 1\right) = 0$

i.e. $\;$ $p = 2$ $\;\;$ or $\;\;$ $p = \dfrac{-1}{2}$

Substituting the values of $p$ in equation $(3a)$ give

  1. when $\;$ $p = 2$, $\;\;\;$ then $\;\;$ $\sqrt{\dfrac{x}{y}} = 2$

    i.e. $\;$ $\dfrac{x}{y} = 4$

    i.e. $\;$ $x = 4y$ $\;\;\; \cdots \; (4a)$

    Substituting $\;$ $x = 4y$ $\;$ in equation $(2)$ gives

    $4y + y + 4y^2 = 9$

    i.e. $\;$ $4y^2 + 5y - 9 = 0$

    i.e. $\;$ $\left(y - 1\right) \left(4y + 9\right) = 0$

    i.e. $\;$ $y = 1$ $\;\;$ or $\;\;$ $y = \dfrac{-9}{4}$

    Substituting the value of $y$ in equation $(4a)$ gives

    1. when $\;$ $y = 1$, $\;$ $x = 4 \times 1 = 4$


    2. when $\;$ $y = \dfrac{-9}{4}$, $\;$ $x = 4 \times \left(\dfrac{-9}{4}\right) = -9$


  2. when $\;$ $p = \dfrac{-1}{2}$, $\;\;\;$ then $\;\;$ $\sqrt{\dfrac{x}{y}} = \dfrac{-1}{2}$

    But square root of any number cannot be negative.

    $\implies$ $p = \dfrac{-1}{2}$ $\;$ is not an acceptable solution.

$\therefore \;$ The solution to the given system of equations is $\left(x, y\right) = \left\{\left(-9, \dfrac{-9}{4}\right), \left(4, 1\right) \right\}$