Algebra - System of Equations and Inequalities

For what value of $a$ is the sum of the squares of the numbers, constituting the solution of the system of equations $\;$ $3x - y = 2 - a$ $\;$ and $\;$ $x + 2y = a + 1$ $\;$ the least?


Given system of equations:

$3x - y = 2 - a$ $\;\;\; \cdots \; (1)$, and $\;$ $\;$ $x + 2y = a + 1$ $\;\;\; \cdots \; (2)$

Multiplying equation $(1)$ with $2$ gives

$6x - 2y = 4 - 2a$ $\;\;\; \cdots \; (3)$

Adding equations $(2)$ and $(3)$ gives

$7x = 5 - a$ $\implies$ $x = \dfrac{5 - a}{7}$

Substituting the value of $x$ in equation $(2)$ gives

$\dfrac{5 - a}{7} + 2y = a + 1$

i.e. $\;$ $2y = a + 1 - \dfrac{5 - a}{7}$

i.e. $\;$ $2y = \dfrac{7a + 7 - 5 + a}{7}$

i.e. $\;$ $2y = \dfrac{8a + 2}{7}$ $\implies$ $y = \dfrac{4a + 1}{7}$

Let $\;$ $s$ $\;$ be the sum of squares of the numbers constituting the solution of the given system of equations. Then,

$s = \left(\dfrac{5 - a}{7}\right)^2 + \left(\dfrac{4a + 1}{7}\right)^2$

i.e. $\;$ $s = \dfrac{25 + a^2 - 10 a + 16 a^2 + 1 + 8a}{49}$

i.e. $\;$ $s = \dfrac{17 a^2 - 2a + 26}{49}$ $\;\;\; \cdots \; (4)$

For $\;$ $s$ $\;$ to be minimum, $\;\;$ $\dfrac{ds}{da} = 0$

$\therefore \;$ We have from equation $(4)$,

$\dfrac{ds}{da} = \dfrac{17}{49} \times 2a - \dfrac{2}{49} + 0 = 0$

i.e. $\;$ $\dfrac{17 \times 2a}{49} = \dfrac{2}{49}$

i.e. $\;$ $a = \dfrac{1}{17}$