Algebra - System of Equations and Inequalities

Solve the following system of equations: $\;$ $x^2 + y^2 = 41, \;\; y - x = 1$


Given system of equations:

$x^2 + y^2 = 41$ $\;\;\; \cdots \; (1)$

$y - x = 1$ $\;$ i.e. $\;$ $y = x + 1$ $\;\;\; \cdots \; (2)$

In view of equation $(2)$, equation $(1)$ becomes

$x^2 + \left(x + 1\right)^2 = 41$

i.e. $\;$ $x^2 + x^2 + 2x + 1 = 41$

i.e. $\;$ $2x^2 + 2x - 40 = 0$

i.e. $\;$ $x^2 + x - 20 = 0$

i.e. $\;$ $\left(x + 5\right) \left(x - 4\right) = 0$

i.e. $\;$ $x = -5$ $\;$ or $\;$ $x = 4$

Substituting the value of $x$ in equation $(2)$ gives

When $\;$ $x = -5$, $\;$ $y = -5 + 1 = -4$

and when $\;$ $x = 4$, $\;$ $y = 4 + 1 = 5$

$\therefore \;$ The solution to the given system of equations is $\;$ $\left(x, y\right) = \left\{\left(-5, -4\right), \left(4, 5\right) \right\}$