Algebra - System of Equations and Inequalities

Solve the following system of equations: $\;$ $xy + x + y = 11, \;\; x^2 y + x y^2 = 30$


Given system of equations:

$xy + x + y = 11$ $\;\;\; \cdots \; (1)$

$x^2 y + x y^2 = 30$ $\;$ i.e. $\;$ $xy \left(x + y\right) = 30$ $\;\;\; \cdots \; (2)$

Let $\;$ $xy = u$ $\;\;\; \cdots \; (3)$ $\;$ and $\;$ $x + y = v$ $\;\;\; \cdots \; (4)$

In view of equations $(3)$ and $(4)$, equations $(1)$ and $(2)$ become

$u + v = 11$ $\implies$ $u = 11 - v$ $\;\;\; \cdots \; (5)$

and $\;$ $uv = 30$ $\;\;\; \cdots \; (6)$

Substituting the value of $u$ from equation $(5)$ in equation $(6)$ gives

$\left(11 - v\right) v = 30$

i.e. $\;$ $v^2 - 11v + 30 = 0$

i.e. $\;$ $\left(v - 6\right) \left(v - 5\right) = 0$

i.e. $\;$ $v = 6$ $\;$ or $\;$ $v = 5$

Substituting the value of $v$ in equation $(5)$ gives

when $\;$ $v = 6$, $\;$ $u = 11 - 6 = 5$;

when $\;$ $v = 5$, $\;$ $u = 11 - 5 = 6$

Substituting $u = 5$ and $v = 6$ in equations $(3)$ and $(4)$ gives

$xy = 5$ $\;\;\; \cdots \; (7)$

and $\;$ $x + y = 6$ $\implies$ $x = 6 - y$ $\;\;\; \cdots \; (8)$

In view of equation $(8)$ equation $(7)$ becomes

$\left(6 - y\right) y = 5$

i.e. $\;$ $y^2 - 6y + 5 = 0$

i.e. $\;$ $\left(y - 5\right) \left(y - 1\right) = 0$

i.e. $\;$ $y = 5$ $\;$ or $\;$ $y = 1$

$\therefore \;$ We have from equation $(8)$

when $\;$ $y = 5$, $\;$ $x = 6 - 5 = 1$

and when $\;$ $y = 1$, $\;$ $x = 6 - 1 = 5$

Next, substituting $u = 6$ and $v = 5$ in equations $(3)$ and $(4)$ gives

$xy = 6$ $\;\;\; \cdots \; (9)$

and $\;$ $x + y = 5$ $\implies$ $x = 5 - y$ $\;\;\; \cdots \; (10)$

In view of equation $(10)$ equation $(9)$ becomes

$\left(5 - y\right) y = 6$

i.e. $\;$ $y^2 - 5y + 6 = 0$

i.e. $\;$ $\left(y - 2\right) \left(y - 3\right) = 0$

i.e. $\;$ $y = 2$ $\;$ or $\;$ $y = 3$

$\therefore \;$ We have from equation $(10)$

when $\;$ $y = 2$, $\;$ $x = 5 - 2 = 3$

and when $\;$ $y = 3$, $\;$ $x = 5 - 3 = 2$

$\therefore \;$ The solution to the given system of equations is $\;$ $\left(x, y\right) = \left\{\left(1, 5\right), \; \left(5, 1\right), \; \left(3, 2\right), \; \left(2, 3\right) \right\}$