Algebra - System of Equations and Inequalities

Solve the following system of equations: $\;$ $x + 2y - z = 7, \;\; 2x - y + z = 2, \;\; 3x - 5y + 2z = -7$


Given system of equations:

$x + 2y - z = 7$ $\;\;\; \cdots \; (1)$

$2x - y + z = 2$ $\;\;\; \cdots \; (2)$

$3x - 5y + 2z = -7$ $\;\;\; \cdots \; (3)$

Adding equations $(1)$ and $(2)$ gives

$3x + y = 9$ $\;\;\; \cdots \; (4)$

Multiply equation $(1)$ with $2$ and add to equation $(3)$. We get

$5x - y = 7$ $\;\;\; \cdots \; (5)$

Adding equations $(4)$ and $(5)$ gives

$8x = 16$ $\implies$ $x = 2$

Substitute the value of $x$ in equation $(4)$ to get

$6 + y = 9$ $\implies$ $y = 3$

Substituting the values of $x$ and $y$ in equation $(2)$ gives

$4 - 3 + z = 2$ $\implies$ $z = 1$

$\therefore \;$ The solution to the given system of equations is $\;$ $\left(x, y, z\right) = \left\{\left(2, 3, 1\right) \right\}$