Algebra - System of Equations and Inequalities

Solve the following system of equations: $\;$ $\dfrac{1}{x + 1} + \dfrac{1}{y} = \dfrac{1}{3}, \;\; \dfrac{1}{\left(x + 1\right)^2} - \dfrac{1}{y^2} = \dfrac{1}{4}$


Given system of equations:

$\dfrac{1}{x + 1} + \dfrac{1}{y} = \dfrac{1}{3}$ $\;\;\; \cdots \; (1)$

and $\;$ $\dfrac{1}{\left(x + 1\right)^2} - \dfrac{1}{y^2} = \dfrac{1}{4}$

i.e. $\;$ $\left(\dfrac{1}{x + 1} + \dfrac{1}{y}\right) \left(\dfrac{1}{x + 1} - \dfrac{1}{y}\right) = \dfrac{1}{4}$

i.e. $\;$ $\dfrac{1}{3} \left(\dfrac{1}{x + 1} - \dfrac{1}{y}\right) = \dfrac{1}{4}$ $\;\;$ [in view of equation $(1)$]

i.e. $\;$ $\dfrac{1}{x + 1} - \dfrac{1}{y} = \dfrac{3}{4}$ $\;\;\; \cdots \; (2)$

Adding equations $(1)$ and $(2)$ gives

$\dfrac{2}{x + 1} = \dfrac{1}{3} + \dfrac{3}{4} = \dfrac{13}{12}$

i.e. $\;$ $24 = 13x + 13$

i.e. $\;$ $13x = 11$ $\implies$ $x = \dfrac{11}{13}$

Substitute $x = \dfrac{11}{13}$ in equation $(1)$ to get

$\dfrac{1}{\dfrac{11}{13} + 1} + \dfrac{1}{y} = \dfrac{1}{3}$

i.e. $\;$ $\dfrac{13}{24} + \dfrac{1}{y} = \dfrac{1}{3}$

i.e. $\;$ $\dfrac{1}{y} = \dfrac{1}{3} - \dfrac{13}{24} = \dfrac{-5}{24}$ $\implies$ $y = \dfrac{-24}{5}$

$\therefore \;$ The solution to the given system of equations is $\;$ $\left(x, y\right) = \left\{\left(\dfrac{11}{13}, \dfrac{-24}{5}\right) \right\}$