Algebra - Equations and Inequations

Given two quadratic equations $x^2 - x + m = 0$ and $x^2 - x + 3m = 0$, $m \neq 0$. Find the value of $m$ for which one of the roots of the second equation is equal to double the root of the first equation.


Given quadratic equations: $\;$ $x^2 - x + m = 0$ $\;\;\; \cdots \; (1)$

$x^2 - x + 3m = 0$ $\;\;\; \cdots \; (2)$

Let $\alpha_1$ and $\beta_1$ be the roots of equation $(1)$.

Let $\alpha_2$ and $\beta_2$ be the roots of equation $(2)$.

As per question, $\;$ $\alpha_2 = 2 \alpha_1$ $\;\;\; \cdots \; (3)$

Now, $\;$ $\alpha_1 + \beta_1 = -1$ $\;\;\; \cdots \; (4a)$; $\;\;$ $\alpha_1 \cdot \beta_1 = m$ $\;\;\; \cdots \; (4b)$

$\alpha_2 + \beta_2 = -1$ $\;\;$ i.e. $\;\;$ $2 \alpha_1 + \beta_2 = -14$ $\;\;\; \cdots \; (5a)$ $\;\;\;$ [in view of (3)]

and $\;$ $\alpha_2 \cdot \beta_2 = 3m$ $\;\;$ i.e. $\;\;$ $2 \alpha_1 \cdot \beta_2 = 3m$ $\;\;\; \cdots \; (5b)$ $\;\;\;$ [in view of (3)]

We have from equations $(4a)$ and $(5a)$,

$2 \beta_1 - \beta_2 = -1$ $\;\;\; \cdots \; (6a)$

From equation $(4b)$, $\;$ $\alpha_1 = \dfrac{m}{\beta_1}$

From equation $(5b)$, $\;$ $\alpha_1 = \dfrac{3m}{2 \beta_2}$

$\therefore \;$ We have, $\;$ $\dfrac{m}{\beta_1} = \dfrac{3m}{2 \beta_2}$

i.e. $\;$ $\beta_2 = \dfrac{3}{2} \beta_1$ $\;\;\; \cdots \; (6b)$ $\;\;$ provided $\;$ $m \neq 0$

In view of equation $(6b)$, equation $(6a)$ becomes

$2 \beta_1 - \dfrac{3}{2} \beta_1 = -1$

i.e. $\;$ $\beta_1 = -2$

Substituting the value of $\beta_1$ in equation $(4b)$ gives

$\alpha_1 = -1 - \beta_1 = -1 + 2 = 1$

Substituting the values of $\alpha_1$ and $\beta_1$ in equation $(4b)$ gives

$1 \times \left(-2\right) = m$ $\implies$ $m = -2$