Algebra - Equations and Inequations

Form a quadratic equation whose roots are the numbers $\dfrac{1}{10 - \sqrt{72}}$ and $\dfrac{1}{10 + 6 \sqrt{2}}$


Roots of the required quadratic equation are

$\alpha = \dfrac{1}{10 - \sqrt{72}} = \dfrac{1}{10 - 6 \sqrt{2}}$ $\;$ and $\;$ $\beta = \dfrac{1}{10 + 6 \sqrt{2}}$

Sum of roots $= \alpha + \beta$

$\begin{aligned} \alpha + \beta & = \dfrac{1}{10 - 6 \sqrt{2}} + \dfrac{1}{10 + 6 \sqrt{2}} \\\\ & = \dfrac{10 + 6 \sqrt{2} + 10 - 6 \sqrt{2}}{\left(10 + 6 \sqrt{2}\right) \left(10 - 6 \sqrt{2}\right)} \\\\ & = \dfrac{20}{100 - 72} \\\\ & = \dfrac{20}{28} \end{aligned}$

Product of roots $= \alpha \cdot \beta$

$\begin{aligned} \alpha \cdot \beta & = \left(\dfrac{1}{10 - 6 \sqrt{2}}\right) \times \left(\dfrac{1}{10 + 6 \sqrt{2}}\right) \\\\ & = \dfrac{1}{100 - 72} \\\\ & = \dfrac{1}{28} \end{aligned}$

Quadratic equation in terms of its roots is

$x^2 - \left(\text{sum of roots}\right) x + \text{product of roots} = 0$

$\therefore \;$ The required quadratic equation is

$x^2 - \dfrac{20}{28}x + \dfrac{1}{28} = 0$

i.e. $\;$ $28 x^2 - 20x + 1 = 0$