Algebra - Binomial Theorem

Find the third term of the expansion of $\left(z^2 + \dfrac{1}{z} \sqrt[3]{z}\right)^n$ if the sum of all the binomial coefficients is equal to $2048$.


Sum of all binomial coefficients is

$C^n_0 + C^n_1 + C^n_2 + \cdots + C^n_n = 2^n$

Then, as per question,

$2^n = 2048$

i.e. $\;$ $2^n = 2^{11}$ $\implies$ $n = 11$

$\therefore \;$ the problem is to find the third term in the expansion of

$\begin{aligned} \left(z^2 + \dfrac{1}{z} \sqrt[3]{z}\right)^n & = \left(z^2 + z^{\frac{1}{3} - 1}\right)^{11} \\\\ & = \left(z^2 + z^{\frac{-2}{3}}\right)^{11} \end{aligned}$

$\therefore \;$ The required third term is

$\begin{aligned} T_3 = T_{2+1} & = C^{11}_{2} \; \left(z^2\right)^{11 - 2} \; \left(z^{\frac{-2}{3}}\right)^2 \\\\ & = \dfrac{11!}{2! \times \left(11 - 2\right)!} \times \left(z^2\right)^9 \times z^{\frac{-4}{3}} \\\\ & = \dfrac{11 \times 10 \times 9!}{2 \times 9!} \times z^{18 - \frac{4}{3}} \\\\ & = 55 z^{\frac{50}{3}} \end{aligned}$