Algebra - Algebraic Expressions

Simplify: $\;$ $\left(\dfrac{x^{\frac{1}{2}} - y^{\frac{1}{2}}}{x y^{\frac{1}{2}} + y x^{\frac{1}{2}}} + \dfrac{x^{\frac{1}{2}} + y^{\frac{1}{2}}}{x y^{\frac{1}{2}} - y x^{\frac{1}{2}}}\right) \dfrac{x^{\frac{3}{2}} y^{\frac{1}{2}}}{x + y} - \dfrac{2y}{x - y}$


$\left(\dfrac{x^{\frac{1}{2}} - y^{\frac{1}{2}}}{x y^{\frac{1}{2}} + y x^{\frac{1}{2}}} + \dfrac{x^{\frac{1}{2}} + y^{\frac{1}{2}}}{x y^{\frac{1}{2}} - y x^{\frac{1}{2}}}\right) \dfrac{x^{\frac{3}{2}} y^{\frac{1}{2}}}{x + y} - \dfrac{2y}{x - y}$ $\;\;\; \cdots \; (1)$

Consider $\; \;$ $\left(\dfrac{x^{\frac{1}{2}} - y^{\frac{1}{2}}}{x y^{\frac{1}{2}} + y x^{\frac{1}{2}}} + \dfrac{x^{\frac{1}{2}} + y^{\frac{1}{2}}}{x y^{\frac{1}{2}} - y x^{\frac{1}{2}}}\right)$

$= \dfrac{x^{\frac{3}{2}} y^{\frac{1}{2}} - xy - xy + x^{\frac{1}{2}} y^{\frac{3}{2}} + x^{\frac{3}{2}} y^{\frac{1}{2}} + xy + xy + x^{\frac{1}{2}} y^{\frac{3}{2}}}{\left(x y^{\frac{1}{2}} + y x^{\frac{1}{2}}\right) \left(x y^{\frac{1}{2}} - y x^{\frac{1}{2}}\right)}$

$= \dfrac{2 x^{\frac{3}{2}} y^{\frac{1}{2}} + 2 x^{\frac{1}{2}} y^{\frac{3}{2}}}{x^2 y - y^2 x}$

$= \dfrac{2 x^{\frac{1}{2}} y^{\frac{1}{2}} \left(x + y\right)}{xy \left(x - y\right)}$

$= \dfrac{2 x^{\frac{-1}{2}} y^{\frac{-1}{2}} \left(x + y\right)}{x - y}$ $\;\;\; \cdots \; (2)$

In view of $(2)$, expression $(1)$ becomes

$\left[\dfrac{2 x^{\frac{-1}{2}} y^{\frac{-1}{2}} \left(x + y\right)}{\left(x - y\right)}\right] \times \dfrac{x^{\frac{3}{2}} y^{\frac{1}{2}}}{\left(x + y\right)} - \dfrac{2y}{x - y}$

$= \dfrac{2x}{x - y} - \dfrac{2y}{x - y}$

$= \dfrac{2 \left(x - y\right)}{x - y}$

$= 2$