Coordinate Geometry - Parabola

Find the equations of the tangents to the parabola $y^2 + 12x = 0$, from the point $\left(3, 8\right)$.


Equation of parabola: $\;$ $y^2 + 12x = 0$ $\;$ i.e. $\;$ $y^2 = -12x$ $\;\;\; \cdots \; (1)$

Comparing equation $(1)$ with the standard equation of parabola $\;$ $y^2 = 4ax$ $\;$ gives

$4a = -12$ $\implies$ $a = -3$

Let the equation of the required tangent be

$y = mx + \dfrac{a}{m}$ $\;\;\; \cdots \; (2a)$

Substituting the value of $\;$ $a$ $\;$ in equation $(2a)$ gives

$y = mx - \dfrac{3}{m}$ $\;\;\; \cdots \; (2b)$

Given: $\;$ Equation $(2b)$ is drawn from the point $\left(3, 8\right)$,

$\implies$ $8 = 3m - \dfrac{3}{m}$

i.e. $\;$ $3m^2 - 8m - 3 = 0$

i.e. $\;$ $\left(3m + 1\right) \left(m - 3\right) = 0$

i.e. $\;$ $m = \dfrac{-1}{3}$ $\;$ or $\;$ $m = 3$

Substituing the values of $m$ in equation $(2b)$ gives

when $\;$ $m = \dfrac{-1}{3}$

$y = \dfrac{-1}{3} x - \dfrac{3}{-1/3}$

i.e. $\;$ $3y = -x + 27$

i.e. $\;$ $x + 3y = 27$ $\;\;\; \cdots \; (3a)$

when $\;$ $m = 3$

$y = 3x - \dfrac{3}{3}$

i.e. $\;$ $3x - y = 1$ $\;\;\; \cdots \; (3b)$

Equations $(3a)$ and $(3b)$ are the required equations of tangents.