Algebra - Algebraic Expressions

Simplify: $\;$ $a - \left\{\left[\dfrac{\left(16 - a\right)a}{a^2 - 4} + \dfrac{3 + 2a}{2 - a} + \dfrac{3a - 2}{a + 2} \right] : \dfrac{a - 1}{a \left(a^2 + 4a + 4\right)} \right\}$


$a - \left\{\left[\dfrac{\left(16 - a\right)a}{a^2 - 4} + \dfrac{3 + 2a}{2 - a} + \dfrac{3a - 2}{a + 2} \right] : \dfrac{a - 1}{a \left(a^2 + 4a + 4\right)} \right\}$

$= a - \left\{\left[\dfrac{\left(16 - a\right) a}{a^2 - 4} + \dfrac{\left(3 + 2a\right) \left(2 + a\right) + \left(3a - 2\right) \left(2 - a\right)}{\left(2 + a\right) \left(2 - a\right)} \right] : \dfrac{a - 1}{a \left(a + 2\right)^2} \right\}$

$= a - \left\{\left[\dfrac{\left(16 - a\right) a}{a^2 - 4} + \dfrac{6 + 3a + 4a + 2a^2 + 6a - 3a^2 - 4 + 2a}{4 - a^2}\right] : \dfrac{a - 1}{a \left(a + 2\right)^2} \right\}$

$= a - \left\{\left[\dfrac{\left(16 - a\right) a}{a^2 - 4} + \dfrac{2 + 15a - a^2}{4 - a^2}\right] : \dfrac{a - 1}{a \left(a + 2\right)^2} \right\}$

$= a - \left\{ \dfrac{16a - a^2 - 2 - 15a + a^2}{a^2 - 4} : \dfrac{a - 1}{a \left(a + 2\right)^2}\right\}$

$= a - \left\{\dfrac{a - 2}{a^2 - 4} : \dfrac{a - 1}{a \left(a + 2\right)^2} \right\}$

$= a - \left\{\dfrac{a - 2}{\left(a + 2\right) \left(a - 2\right)} : \dfrac{a - 1}{a \left(a + 2\right)^2} \right\}$

$= a - \left\{\dfrac{1}{a + 2} \times \dfrac{a \left(a + 2\right)^2}{a - 1} \right\}$

$= a - \dfrac{a \left(a + 2\right)}{a - 1}$

$= \dfrac{a^2 - a - a^2 - 2a}{a - 1}$

$= \dfrac{-3a}{a - 1}$