Simplify: $\;$ $x^{\frac{1}{2}} + x^{\frac{-1}{2}} + \dfrac{\left(1 - x\right) \left(1 - x^{\frac{-1}{2}}\right)}{1 + \sqrt{x}}$
$x^{\frac{1}{2}} + x^{\frac{-1}{2}} + \dfrac{\left(1 - x\right) \left(1 - x^{\frac{-1}{2}}\right)}{1 + \sqrt{x}}$
$= \sqrt{x} + \dfrac{1}{\sqrt{x}} + \dfrac{\left(1 - x\right) \left(1 - \dfrac{1}{\sqrt{x}}\right)}{1 + \sqrt{x}}$
$= \dfrac{x + 1}{\sqrt{x}} + \dfrac{1 - \dfrac{1}{\sqrt{x}} - x + \dfrac{x}{\sqrt{x}}}{1 + \sqrt{x}}$
$= \dfrac{x + 1}{\sqrt{x}} + \dfrac{\sqrt{x} - 1 - x \sqrt{x} + x}{\sqrt{x} \left(1 + \sqrt{x}\right)}$
$= \dfrac{\left(x + 1\right) \left(1 + \sqrt{x}\right) + \sqrt{x} - 1 - x \sqrt{x} + x}{\sqrt{x} \left(1 + \sqrt{x}\right)}$
$= \dfrac{x + x \sqrt{x} + 1 + \sqrt{x} + \sqrt{x} - 1 - x \sqrt{x} + x}{\sqrt{x} \left(1 + \sqrt{x}\right)}$
$= \dfrac{2x + 2 \sqrt{x}}{\sqrt{x} + x}$
$= \dfrac{2 \left(\sqrt{x} + x\right)}{\sqrt{x} + x}$
$= 2$