Algebra - Algebraic Expressions

Simplify: $\;$ $\left(\dfrac{1}{2 + 2 \sqrt{a}} + \dfrac{1}{2 - 2 \sqrt{a}} - \dfrac{a^2 + 1}{1 - a^2}\right) \left(1 + \dfrac{1}{a}\right)$


$\left(\dfrac{1}{2 + 2 \sqrt{a}} + \dfrac{1}{2 - 2 \sqrt{a}} - \dfrac{a^2 + 1}{1 - a^2}\right) \left(1 + \dfrac{1}{a}\right)$

$= \left(\dfrac{2 - 2 \sqrt{a} + 2 + 2 \sqrt{a}}{\left(2 + 2 \sqrt{a}\right) \left(2 - 2 \sqrt{a}\right)} - \dfrac{a^2 + 1}{1 - a^2}\right) \left(\dfrac{a + 1}{a}\right)$

$= \left(\dfrac{4}{4 - 4a} - \dfrac{a^2 + 1}{\left(1 + a\right) \left(1 - a\right)}\right) \left(\dfrac{a + 1}{a}\right)$

$= \left(\dfrac{1 + a - a^2 - 1}{\left(1 + a\right) \left(1 - a\right)}\right) \left(\dfrac{a + 1}{a}\right)$

$= \dfrac{a \left(1 - a\right)}{1 - a} \times \dfrac{1}{a}$

$= 1$