Simplify: $\;$ $\dfrac{x^{\frac{1}{2}} + x^{\frac{-1}{2}}}{1 - x} + \dfrac{1 - x^{\frac{-1}{2}}}{1 + \sqrt{x}}$
$\dfrac{x^{\frac{1}{2}} + x^{\frac{-1}{2}}}{1 - x} + \dfrac{1 - x^{\frac{-1}{2}}}{1 + \sqrt{x}}$
$= \dfrac{\sqrt{x} + \dfrac{1}{\sqrt{x}}}{1 - x} + \dfrac{1 - \dfrac{1}{\sqrt{x}}}{1 + \sqrt{x}}$
$= \dfrac{x + 1}{\sqrt{x} \left(1 - x\right)} + \dfrac{\sqrt{x} - 1}{\sqrt{x} \left(1 + \sqrt{x}\right)}$
$= \dfrac{x + 1}{\sqrt{x} - x \sqrt{x}} + \dfrac{\sqrt{x} - 1}{\sqrt{x} + x}$
$= \dfrac{\left(x + 1\right) \left(\sqrt{x} + x\right) + \left(\sqrt{x} - 1\right) \left(\sqrt{x} - x \sqrt{x}\right)}{\left(\sqrt{x} - x \sqrt{x}\right) \left(\sqrt{x} + x\right)}$
$= \dfrac{x \sqrt{x} + x^2 + \sqrt{x} + x + x - x^2 - \sqrt{x} + x \sqrt{x}}{x + x \sqrt{x} - x^2 - x^2 \sqrt{x}}$
$= \dfrac{2x + 2x \sqrt{x}}{x \left(1 + \sqrt{x}\right) - x^2 \left(1 + \sqrt{x}\right)}$
$= \dfrac{2x \left(1 + \sqrt{x}\right)}{\left(x - x^2\right) \left(1 + \sqrt{x}\right)}$
$= \dfrac{2x}{x \left(1 - x\right)}$
$= \dfrac{2}{1 - x}$