Coordinate Geometry - Parabola

Find the vertex, axis, focus and directrix of the parabola $\;$ $\left(y + 3\right)^2 = 4x + 4$.


Equation of given parabola: $\;$ $\left(y + 3\right)^2 = 4x + 4$

i.e. $\;$ $\left(y + 3\right)^2 = 4 \left(x + 1\right)$ $\;\;\; \cdots \; (1)$

To shift the origin to the point $\left(-1, -3\right)$,

let $\;$ $x + 1 = X$ $\;\;\; \cdots \; (2a)$ $\;$ and $\;$ $y + 3 = Y$ $\;\;\; \cdots \; (2b)$

In view of equations $(2a)$ and $(2b)$, equation $(1)$ becomes

$Y^2 = 4 X$ $\;\;\; \cdots \; (3)$

  1. Vertex of equation $(3)$ is $\;$ $\left(0, 0\right)$

    i.e. $\;$ $X = 0, \;\;\; Y = 0$

    When $\;$ $X = 0$

    $\implies$ $x + 1 = 0$ $\;$ i.e. $\;$ $x = -1$ $\;\;\;$ [by equation $(2a)$]

    When $\;$ $Y = 0$

    $\implies$ $y + 3 = 0$ $\;$ i.e. $\;$ $y = -3$ $\;\;\;$ [by equation $(2b)$]

    $\therefore \;$ Vertex of equation $(1)$ is $\;$ $\left(-1, -3\right)$

  2. Axis of equation $(3)$ is $\;\;$ $Y = 0$

    $\therefore \;$ Axis of equation $(1)$ is $\;\;\;$ $y + 3 = 0$ $\;\;\;$ [by equation $(2b)$]

    i.e. $\;$ $y = -3$

  3. Comparing equation $(3)$ with the standard equation of parabola $\;\;$ $Y^2 = 4a X$ $\;\;$ gives

    $a = 1$

    $\therefore \;$ Focus of equation $(3)$ is $\;\;\;$ $\left(a, 0\right) = \left(1, 0\right)$

    $\implies$ $X = 1, \;\;\; Y = 0$

    When $\;$ $X = 1$

    $\implies$ $x + 1 = 1$ $\;$ i.e. $\;$ $x = 0$ $\;\;\;$ [by equation $(2a)$]

    When $\;$ $Y = 0$

    $\implies$ $y + 3 = 0$ $\;$ i.e. $\;$ $y = -3$ $\;\;\;$ [by equation $(2b)$]

    $\therefore \;$ Focus of equation $(1)$ is $\;\;\;$ $\left(0, -3\right)$

  4. Directrix of equation $(3)$ is $\;\;\;$ $X = -a$

    i.e. $\;$ $X = -1$

    i.e. $x + 1 = -1$ $\;\;\;$ [by equation $(2a)$]

    $\therefore \;$ Directrix of equation $(1)$ is $\;\;\;$ $x + 2 = 0$