Coordinate Geometry - Circle

Find the equations of the tangents to the circle $\;$ $2x^2 + 2y^2 = 5$ $\;$ which are perpendicular to $\;$ $y = 2x$.


Given circle: $\;\;$ $2x^2 + 2y^2 = 5$

i.e. $\;$ $x^2 + y^2 = \dfrac{5}{2}$ $\;\;\; \cdots \; (1)$

Comparing equation $(1)$ with the standard equation of circle $\;$ $x^2 + y^2 = a^2$ $\;$ gives

$a^2 = \dfrac{5}{2}$ $\implies$ $a = \pm \sqrt{\dfrac{5}{2}}$

Given line: $\;\;$ $y = 2x$ $\;\;\; \cdots \; (2)$

Slope of the given line $= m_1 = 2$

Since the required tangents are perpendicular to $(2)$,

$\therefore \;$ slope of tangents $= m = \dfrac{-1}{m_1} = \dfrac{-1}{2}$

Equations of tangents are

$y = mx \pm a \sqrt{1 + m^2}$

i.e. $\;$ $y = \dfrac{-1}{2}x \pm \sqrt{\dfrac{5}{2}} \times \sqrt{1 + \dfrac{1}{4}}$

i.e. $\;$ $y = \dfrac{-1}{2}x \pm \sqrt{\dfrac{5}{2}} \times \dfrac{\sqrt{5}}{2}$

i.e. $\;$ $y = \dfrac{-1}{2} x \pm \dfrac{5}{2 \sqrt{2}}$

i.e. $\;$ $2 \sqrt{2} y = - \sqrt{2} x \pm 5$

$\therefore \;$ The equations of the required tangents are

$\sqrt{2} x + 2 \sqrt{2} y + 5 = 0$ $\;$ and $\;$ $\sqrt{2} x + 2 \sqrt{2} y - 5 = 0$